Computation and experimental evaluation of Mordell–Tornheim–Witten sum derivatives
نویسندگان
چکیده
In previous work the present authors and others have studied Mordell-Tornheim-Witten sums and their connections with multiple-zeta values. In this note we describe the numerical computation of derivatives at zero of a specialization originating in a preprint by Romik, and the experimental evaluation of these numerical values in terms of well-known constants.
منابع مشابه
Computation and theory of extended Mordell-Tornheim-Witten sums
We consider some fundamental generalized Mordell–Tornheim–Witten (MTW) zeta-function values along with their derivatives, and explore connections with multiplezeta values (MZVs). To achieve this, we make use of symbolic integration, high precision numerical integration, and some interesting combinatorics and special-function theory. Our original motivation was to represent unresolved constructs...
متن کاملComputation and structure of character polylogarithms with applications to character Mordell-Tornheim-Witten sums
This paper extends tools developed in [10, 8] to study character polylogarithms. These objects are used to compute Mordell-Tornheim-Witten character sums and to explore their connections with multiple-zeta values (MZVs) and with their character analogues [17].
متن کاملDerivatives and Fast Evaluation of the Witten Zeta Function
We study analytic properties of the Witten zeta function W(r, s, t), which is also named after Mordell and Tornheim. In particular, we evaluate the function W(s, s, τs) (τ > 0) at s = 0 and, as our main result, find the derivative of this function at s = 0. Our principal tool is an identity due to Crandall that involves a free parameter and provides an analytic continuation. Furthermore, we der...
متن کاملComputation and theory of Mordell-Tornheim-Witten sums II
In [7] the current authors, along with the late and much-missed Richard Crandall (1947– 2012), considered generalized Mordell–Tornheim–Witten (MTW) zeta-function values along with their derivatives, and explored connections with multiple-zeta values (MZVs). This entailed use of symbolic integration, high precision numerical integration, and some interesting combinatorics and special-function th...
متن کاملOn Eulerian Log-Gamma Integrals and Tornheim–Witten Zeta Functions
Stimulated by earlier work by Moll and his coworkers [1], we evaluate various basic log Gamma integrals in terms of partial derivatives of Tornheim– Witten zeta functions and their extensions arising from evaluations of Fourier series. In particular, we fully evaluate
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016